
REPORT DOCUMENTATION PAGE AFRL-SR-AR-TR-07-0411
Public reporting burden for this collection of information a estimated to average 1 hour per response, including the time for reviewing the

data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any othi uIng

this burden to Department of Defense, Washington Headquarters Services. Directorate for Information Operations and Reports (0704 1-

4302 Respo~dents should be aware that notwbithstanding any other provision of law, no person shall be subject to any penalty for fa enfy

valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS._---

1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To)

15/01/2007 Final Report 01/12/2005---30/11/2006

4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER

Algorithm and Implementation of P-adic Cyclic Codes Using

Exact Arithmetic Library Developed for Quantum Computing 5b. GRANT NUMBER
FA9550-06-1-0038
5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) Sd. PROJECT NUMBER

Chao Lu

Computer & Information Sciences S. TASK NUMBER

Towson University 5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT
NUMBER

Towson University 8000 York Road
Towson, MD 21252

9. SPONSORING I MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)

Dr. Jon Sjogren 4015 Wilson Blvd, Room 713

AFOSR/NM Arlington, VA 22203-1954
11. SPONSORIMONITOR'S REPORT

NUMBER(S)

12. DISTRIBUTION I AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

Summary: The first part of the research is that we have expanded the Exact Scientific Computational Library (ESCL), and Dixon's

algorithm on rational N by N matrix inverse was implemented. We studied and experimented the relation of required length M of p-adic

expansion and the prime p, and the possible use of the length of periodicity of a rational number's p-adic expansion in determining the

length of required M in rational matrix operations.

The second part of the work is to develop and implement computational algorithms for p-adic cyclic code generation, which is based on the

results of the paper, Modular andp-adic cyclic codes, by A.R.Calderbank and NJ.A. Sloane. Algorithms and software have been developed

to give an alternative solution to factorize the polynomial X"-I over the ring of integers modulo pa, where p is a prime not dividing n, and it

can generate the table of cyclic codes using the divisors of X'-I as their generator polynomials.

All the implementation of ESCL is in C++, as well as the software to generate p-adic cyclic codes.

15. SUBJECT TERMS

IS. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF RESPONSIBLE PERSON
OF ABSTRACT OF PAGES Chao Lu

a. REPORT b. ABSTRACT c. THIS PAGE 19b. TELEPHONE NUMBER (include area
code)
410-704-3701

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.1S

Algorithms and Implementation for P-adic Cyclic Codes Using Exact

Arithmetic Library Developed for Quantum Computing

Final Report (Grant # FA9550-06-1-0038)

Chao Lu

Computer & Information Sciences

Towson University

January 16, 2007

TOW'S ON
UNIVERSITY

20071016432

1. Summary

The first part of the research is that we have expanded the Exact Scientific Computational Library (ESCL),

and the Dixon's algorithm [I] on rational N by N matrix inverse was implemented. We studied the relation

of required length M ofp-adic expansion and the prime p by experiments, and the possible use of the length

of periodicity of a rational number's p-adic expansion in determining the length of required M in rational

matrix operations.

The second part of the work is to develop and implement computational algorithms for p-adic cyclic code

generation, which is based on the results of the paper, Modular andp-adic cyclic codes, by A.RlCalderbank

and NJA. Sloane [2]. Algorithms and software have been developed to give an alternative solution to

factorize the polynomial X"-I over the ring of integers modulo pa, where p is a prime not dividing n, and it

can generate the table of cyclic codes using the divisors of A"-] as their generator polynomials.

All the implementation of ESCL is in C++, as well as the software to generate p-adic cyclic codes.

2. Progress on ESCL Using P-adic Arithmetic

In the design of ESCL we employ several developing tools and a specific library--NTL. We use Visual C++

6.0 and MFC to develop and debug the codes. MATLAB Symbolic is used for comparison. We adopt the

NTL library to process the input and output of arbitrary long integers, which are the numerator and

denominator of a rational NTL, written by Shoup [3], a high-performance, portable C++ library for number

theory that provides both data structures and algorithms for arbitrary length integers. NTL allows

manipulation of integers for vectors, matrices, and polynomials over finite fields, and arbitrary precision

floating-point arithmetic.

Our ESCL has the following operations:

1) Converting rational to p-adic number and via verse.

2) Single rational number's calculation: addition, subtraction, multiplication and division.

3) The addition, subtraction and multiplication of two rational matrixes.

4) The inverse of a single rational N by N matrix.

In order to improve the efficiency of ESCL, a proper prime p and the length M ofp-adic expansion need to

be determined. We did experiments on a random rational matrix with different prime numbers and record

the execution time. Our experiments show that the running time is more related to the length M ofp-adic

sequence, where "M" can be calculated based on the prime p:

m = 2[1og(,') / logp], (1)

where the 8 = H2A, and A, is the Euclidean length of the ith column.

The process of choosing p and M can be done as follows. Suppose that for certain "p", we can get "M" very

2

small. If we choose a small M, then use (1) to calculate prime p. Thus we will get a relatively big prime and

a theoretic smallest M, and some adjustment is needed during the process. The flow chart is shown in

Figure 1.

Input the matrix to
be calculated.

mEstimate2 0

Get the prime number being

estimated (estimatePrime). Here

we suppose the m=l.

selectPrime0

Get the accurate prime number.

mEstimate2 0

Get them. I

Figure 1. Estimating the prime Pumber

Dixon's algorithm for matrix inverse from "Exact Solution of Linear Equations Using P-adic Expansions"

[1] was implemented, which is the newly added function since the last report. To get the A", for which

AxA1 =I, we take the following three steps.

1) Get the nxn matrix C, whose entries lie in [0, p-1]

AAP=I=> AA-1 mod p = I mod p => A C =- I mod p; => C =- A" mod p.

2) Compute a p-adic approximation x' to A". x' is a nxl column ofA" .

rn-I rn-I

x'= xp' = (Cb, mod p)p'
1=0 i=0

3) Transfer x' to rational field.

Repeat doing 2) 3), until bi=bn-1,

and bo= bl= ... b.-,=

3

Figure 2 shows an example for this operation.

Figure 2. Matrix inverse example

Our system is capable of carrying out exact arithmetic operations for rational numbers using the finite

segmented p-adic numbers. The representation of the rational numbers has several appealing properties.

Given the usual representation of the positive integers, it is, in a genuine sense, the natural extension to the

rational. The algorithms for addition, subtraction, and multiplication are those of the usual integer

arithmetic; the division algorithm is truly the analogue of multiplication.

When two p-adic rational numbers are added, subtracted, multiplied, or divided, the result is an infinite but

eventually repeating sequence of digits (periodicity).

Despite the advantages of finite segment p-adic arithmetic and exact representation, there are certain issues

need to be addressed:

1) Improve the EstimateMo. Currently, the Mestimation does not always work well. In some situation, it

cannot give the sufficient number of digits for p-adic sequence for exact computation. To avoid this

kind of errors, we have increased its size to 30 and more.

2) A more efficient method for prime number selection for the given rational.

3. The Length of Periodicity for the P-adic Expansion

To determine what is the sufficient length M of p-adic expansion for a rational number in the matrix

operation is not a trivial problem. Let us observe what happens after the arithmetic operations of two p-adic

4

sequences.

All rational numbers can be uniquely written in the form of a = Zajp' .
J=o

We know that a real number is rational if and only if its decimal expansion is periodic. Similarly, a p-adic

number is rational if and only if its p-adic expansion is periodic. Consequently, since we are primarily

interested in the p-adic expansions of rational numbers we will be dealing only with p-adic expansions

which are periodic.

The expansion eventually repeats to the right. That is, if a is a rational number, then it has a repeating

pattern of ajpj in its P-adic expansion, i.e., it is of the form

a =.Ao...Asao...ani

For example:

3 .231 (p=5)3

3 .41 (p=5)
3

The operation of addition, subtraction, multiplication and division in the set of p-adic numbers are quite

similar to the corresponding operations in decimals. The main difference, however, is that we proceed from

"left to right" rather than from "right to left" as we do with decimals.

Addition/subtraction

Assume that we have two P-adic sequences: (s<t)

a = .A ,... A a, a ... a ,,

b =.B Bb, ... b.

Line up these two sequences

AIA2 ...A4,a, ... a,-,, at-s+l-.

B1

Set as 1 = c1

•v. a,_,,+,+, = at-s+l

c. I+ = CI

5

AIA2...A•.Q,...at-, C1- [*Ci..n i.o...

B, ... B, |b, ... bmb, ... b,"...

Let's consider the right side of the vertical stroke line

Cl C2 C 3 ... Cn C1 Cn...

+ b, b2 b3 b, b, ... b,...

c1+b1 c2+b2 c3+b3 ... ck+bk...

Suppose two integer x,y satisfy the condition that x • y and c_+bx = cy+by

"c." and by can be any number

in the worst case, we must make sure that c., = a= a, and cx = by = bj

x = klxn + i= k2xm +j

y = k3xn + i= k4xm +j

Sx-y = (k-k3) x n = (k2-k4) X m

.'. kl-k3 and k2-k4 are nonzero integers

x-y must be exactly divisible by n and m, the smallest integer which satisfies this requirement is LCM(nm).

The carry digits' modification

We only need to consider the (t+l)th carry digit, because it will cause the exception of the periodic part.

Since the maximum carry digit of the addition of two numbers is 1, we can classify the following numbers

into three types and they have different effects.

Type One: The (t+ l)th digit is less than p-l, assume the (t+ J)th digit is q:

S.q... + 1 (the carry digit) = .(q + 1)...

so only one digit will be affected.

Type Two: The next r digits following the tth digit have the value p-I

Assume the (t+r+ 1)th digit is q, and q < p -1

r r

.(p -).(p - 1)q... + I... =. .0...0(q + 1)...

r + 1 digits will be affected.

In addition, r <LCM(n,m)

Because if r = LCM(n,m), then it belongs to the type three.

Type Three: The digits following the tth digit are rotation numbers of p-1

6

.p-1+1=.0=0

The result is 0.

We can draw a conclusion that the maximum length of the p-adic expansion is:

2 x LCM(n,m) + max(s,t) - 1.

Multiplication

axb =.A,... Asa,... an x.B,... B, b,...b.

- ... As a,... an x.B ... B, +.A,... As a,... an x .O...Obi... b,

-A .A... As a,... a,, x.-B,... B, +.-A,... A, x.0O... Ob, ... b, +.O ... Oa, ... an x.0O... Ob, ... b,

12 3

Let's analyze the three parts separately,

Part 1:

"A ... As E Z

• '..Al... Asal.. -a. x.Bj ... B, = .CI... C. , q... cn

That is, the result is a p-adic sequence, which has a periodic part of n digits.

Part 2:

"B• B, EZ

* a... A, x.0...Obi... b =*.Di ... D, di... d.m

That is, the result is a p-adic sequence, which has a periodic part of m digits.

Part I + Part 2:

.A,... As a,... a. x.Bi... B, +. Ai... As x.0...Obi... bm

According to the previous conclusion we get from the Addition part,

.Ai A, a, . .. an X AB . .. B, + .A, . .. A., x .0 ... Obl ... b,, = .El ... E. e, ... e Lcu •.,m)

This is a p-adic sequence which has a periodic part of LCM(n,m) digits.

Part 3:

7

S

.O...Oai... a. x .O...Ob,... b.

=(.a1... aj)x(I+p"+p'2 +...+prn)x(.b,...bm)x(I+pm +p 2 m +...+pr)xps+,

=(.a,...a,)x(.b,...b.)xps ' x(l+p" +p 2
n +... +pr)x(1 + p, + p2r +...+ p,)

Part 4 (.a, a) x (.b, . .) +'

Part 5 is the one we need to focus on.

(++pm +p 2n +... +pr)x(l (+pm +p 2rm +... + po)

n-I n-1 m-I m-I

=.10...010...0... x. 10...010...0...

a1 a2 a3 a4 a5 a6 a7 a8 ... ak ...

x b, b l b3 b4 b5 b6 b7 bs ... bk...

alb, a2b, a3b, a4b, a5b, a6b, a7b, asb, ... akbl ...

aib2 a2b2 a 3b2 a4b2 asb2 a6b2 a7 b2 ... aklb2 ...

a1b3 a2b3 a3b3 a4b3 asb3 a6b3 ... akAb...

albk ...

Ignore the carry, the kth products digit is akb1 + ak-lb 2 +... + albk

Set (k'+l) x LCM(n,m) > k > k'xLCM(n,m) let LCM(n,m) = ,

akbi + ak-lb2 +. .. + ak-t+1b, + akItbb+l + ak, 1b,+2 + . + ak_2+lb2t + + ak'ktbk1t+I +. + albk

1 2 3

v ak+i = ak1+i =... = ak(k1(+i & b, = = bk.. +

part 1 can be rewrite as ak-k,'bI + ak-k,_b2 +... + albk-k,1 + atbk-k,l+ +... + ak-k.,+Ibf
part 2 can also be rewrite as ak kbl + ak-VfA +..b + albkk•, + afbkk•_,+ +.. + akkf+lbl

part 3 can be rewrite as akk,,bi + ak-k.,b 2 +... + albk_-k'

We can find that part 1 equal to part 2, and because there are LCM(n,m) items in this part, we must get

a, x b, once, which is the only item has the value 1, and all other items' value is 0, that is the result of part

1 is 1, so far as part 2.

Part 3 is the actually the front part of part 1, that means the value of part 3 may be I or 0.

Base on this discovery, we can divide the configuration into LCM(n,m) x LCM(n,m) modules. Let's

take 100100100... x101010...(p = 5) as an example.

8

LCM(2,3)=6, so we divide the module in 6 x 6
.100100100100100100100100100100100100...

x10 lOlOlOlOlOlOlOl00 10 l0100100 10010010...
1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0

1 0 0 1 0 0 1 0

0 0 0 0 0 0 0

1 0 0 1 0 0

0 0 0 0 0

1 0 0 1

0 0 0

1 0

0

1 0 1 1 1 112 1 2 2 2 213 2 3 3 3 31 4 3 4 4 4 415 4 5 5 5 5

We can find two type of modules here, one is:

1 0 0 1 0 0

0 0 0 0 0

1 0 0 1

0 0 0

1 0

0

0000 0000 0000 0000 0000 000

This one is corresponding to the part3;

The other one is:

1 0 0 1 0 0

0 0 0 0 0 0

0 0 1 0 0 1

0 0 0 0 0 0

0 1 0 0 1 0

0 0 0 0 0 0

This one is corresponding to the parti part2 and so on, we can accumulate every line of this module, the

result is always 1, which is the previous conclusion we draw for part 1.

Ignore the carry, assume that ck is the kth digit of the product, we can find that Ck+, = Ck + 1

Now let's continue to get the result:

101111 212222 323333 434444 545555 656666 767777 878888 989999...

101111212222 323333 434444 001111212222 323333 434444 001111...

100100100... x101010...

= 1011112122223233334344440

Conclusion: In multiplication, the length of periodic part of the product is:

LCM(m,n)x(p -1), (2)

where m and n are the length of periodic part of the two multipliers, p is the prime.

The length of periodicity of the resulting p-adic sequence can be very large from (2). But if we should

represent all the p-adic sequences with a complete period during all the calculations, we will definitely

carry out all the arithmetic operations exactly.

4. Computational Algorithm and Software for Generating P-adic Cyclic Codes

A.R.Calderbank andN.JA. Sloane [2] "Modular and p-adic cyclic codes ", studied how to lift from binary

cyclic Hamming code of length 7 to octacode, which is equivalent to the binary nonlinear

Mordstrom-Robinson code, and provided a general structure of cyclic codes over Zs, Z16, ..., then to the

2-adic integers Z2oo. That is to say, all the cyclic codes share a common generator polynomial X3 + X2 +

(X-I)x -1, which satisfies X2 - X + 2 = 0, X is a 2-adic number.

The purpose of our study is to provide an alternative solution to generate the p-adic cyclic codes, which can

be implemented efficiently using computer science methodology, and we developed software to generate

p-adic cyclic codes.

Theoretical Background

10

According to the definition of cyclic code, a subset S of Zqn is cyclic if (a,,.1 ao,aj a,. 2)E S whenever

(ao,a a,. 2 ,a0 .1) E S. A linear code C is called a cyclic code if C is a cyclic set.

We also know that, R = Z,[X]/(X'-1) forms a polynomial ring. By defining the following map between Zq"

and Zq[X]/(Xn- 1),

IE: Zq n-" Zq[X]/(Xn-1), (ao,a 1 ,...,a4.r) I-' ao+alx+...+a,-Ixnul (3)

We can set up a one to one correspondence between an element of space Zqn and an element polynomial of

ring Zq[X]/(Xn- 1).

Connect ideals of ring Zq[X]/(Xn- 1) and cyclic codes contained in Zqn by the following theorem:

Theorem 1 Let nt be the linear map defined in (3). Then a nonempty subset C of Zq" is a cyclic code if and

only if n(C) is an ideal of Zq[X]/(Xn-1). (Proof in [4], p. 136).

For the convenience of our discussion, we give the following definition of the generator polynomial of a

cyclic code.

Definition I The unique monic polynomial of the least degree of a nonzero ideal I of Zq[X]/(Xn-I) is called

the generator polynomial off. For a cyclic code C, the generator polynomial of n(C) is also called the

generator polynomial of C.

By using this definition, we can set up an one-to-one correspondence between the cyclic codes in Zq' and

the monic divisors of Xn-I E Zq[x].

To be precise, each monic divisor of X'-I is a generator polynomial of a cyclic code in Zq

For example, by factorizing the polynomial x6 - I E Z2[x:

X6- 1 (1 + x) 2(l +x+ x2) 2

We can list all the monic divisors ofx6 - 1:

1, l+x, l+x+x 2,

(1 + x)2, (1 + x)(1 + x + x2), (1 + x) 2(1 + x + X2),

(+ X + x2)2, (+ x)(l + x + x2) 2, I + x6.

These nine monic divisors are related to nine ideals of ring Z2[x]/X5-1, and thus related to nine cyclic codes

of length 6. Based on the map nt, we can generate all these cyclic codes.

For instance, we can get the cyclic code corresponding to the polynomial (1 + x + x2)2 as its generator by

the following way:

Step i. Expand the generator polynomial, (1+x + x2)2 = 1 + x2 + x4.

Step 2. Multiply the generator polynomial with all the polynomials within the ring Z2[x]iX5-1, and get the

following ideal I:
(0, 1 + x2 + x 4 , x + x 3 + x 5, 1 + x + x 2 + x 3 + x 4 + x 5 }.

Step 3. Using map n, we get the corresponding cyclic code:

(000000, 101010,010101, 111}.

11

In general, we denote [n,k,d] to describe a linear code and naturally a cyclic code, where n is the length of

the codeword, k is the number of the base vectors, and d is the least distance between any two code words.

The following theorem can relate [n,k, d] of a cyclic code to the features of the generator polynomial of an

ideal I of ring Zq[X]/O('1-).

Theorem 2 Let g(x) be the generator polynomial of an ideal of Zq[X]/(X"-I). Then the corresponding cyclic

code has dimension k if the degree of g(x) is n-k, and the length of the codeword is n.

In the above example, the generator polynomial is g(x) = I + X2 + x4, and n = 6, k = 6-4 =2.

This relates to a [6,2,3] cyclic code. The length of the codeword is 6, and this cyclic code will have 2k = 22

= 4 code words.

The following theorem decides the number of cyclic codes:

Theorem 3 Let xn - I E Zq[x] have the factorization

r

x"- I = fl-[pei(x),

i=I

where p,(x), p2(x) ... , p,(x) are distinct monic irreducible polynomials and e, _ I for all i = 1,2,..., r. Then

there are RJ j (e,+ 1) cyclic codes of length n over Zq.

The key point of finding all the cyclic codes over Zq" is the factorization of X"-] over Zq. We will discuss

our method to factorize the polynomial X"-1 over Zq.

Mechanism to Generatep-adic Cyclic Codes

The idea of generating p-adic cyclic codes is given by the following theorem:

Theorem 4 Let q = p, 1 •a _:•c If gl(x) e Zp[x] is a monic irreducible divisor of x"-1 over Zp, then there

is a unique monic irreducible polynomial ga(x) e Zq[x] which divides x"-] over Zq and is congruent to gl(x)

mod p.

The complete proof can be found in [2]. If we define a cyclic code of length n over Zp, we can get another

cyclic code of Zp2 whose generator polynomial is obtained by lifting the generator polynomial of the first

cyclic code to ZP2. And then we can continue this way to get the cyclic code over Z. where I •<a :5 .

An Alternative Algorithm for the Generation ofp-adic Cyclic Codes

Our algorithm has two steps:

a) Factorization of X"-I over Z2;

b) Lifting the generator polynomial over Z2r and then to Z2r+ 1.

Step a) is the foundation of our implementation. In order to simplify our situation, we will let n be a prime,

which has the form 8m-1, so that X"-1 can always be factorized over Z2 in the following form:

x"-I = (x- 1) II(xNr 2 Nx)

where all the factors are irreducible.

12

Factorization of X"-I over Z2

Since

x"- I = (x - l)I(x)IT2(x)

lE,(x) = ao + aix + a2x
2 + + an_!2xn' 12

"712(x) = b, + bix + b 2X2 + ... + bn-2Xn-/2

a,, bi E Z2 (0: i n-i/2),

So
xn-I = (X_ I)(, + x+x2 + ... + xn-) (X -)n Ix)W2(x

Let

a0bo = 1 (mod 2),

a0b, + a,bo 1 (mod 2),

aobn.1/2 + alb(.1/2)-i + ... + an-1/2b 0 = 1 (mod 2),

albn-1/2 + a2b(n.1/2)-I + ... + an.1/2b= 1 (mod 2),

a,.t/2bn.1/2 =I (mod 2).

And the vector (aO,al ,...,an-1/2,bO,bl ,...,bn-l/2) which satisfies all the equations above will be the

coefficients of irreducible polynomials n1(x) and n2(x).

Therefore, it is easy for computers to enumerate from (0,0,0,...,0) to (1,1,1,....1); and because x"-I has the

unique factorization, so the computer can stop wherever it finds a solution.

Lifting the Generator Polynomial over Z2r to Z2r+1

From theorem 1, we know that for every monic irreducible divisor h,(x) of X'-I over Zp, there is a unique

monic irreducible polynomial in Z4•[x] which divides X'-I over Zp. and is congruent to h1(x) mod p. Let

xn-I = (x- -)I(x)t2(x);

Assume

IW(x) = f2 1(x), n2(x) = g21(x);

Let

f22(x) = f21(x) + 2*(co + clx + ... + C,/2xn"/2),

g22(x) = g21(x) + 2*(do + dix + ... + dn2x/2),

0_ •ci, di < 1,0 < i_ !n-1/2.

We have

f22(x) - f2 1(x) (mod 2), g22(x) - g2 1(x) (mod 2).

Let

13

f22(x) = c 'o + c' 1x + ... + C 'n1 /12Xn 1/2,

n-1/2
g22(x) =d'o + d'j + ... +d'R12

Again, we can use computer to enumerate vector (c0,cl,...,Cn-1/2,do,dl,...,dn-1i2) from (0,0,..,O,) to (1,1.IJ) to

find a value which can satisfy' the following equation group:

c'0 d'0 = I (mod 2 2),

c'd,+ c'1d' 0 1 (mod 2 2),

c'd.12+ c' ld'(,,/ 2).I + +. C'., 1/2d'0 = 1 (mod 2 2),

c',d'n-1/2 + c' 2d'(.-1, 2).l + +. +c'n-1/2d' = I (mod 2 2),

='-/d'-/ I (mod 22).

The solution will be the unique factorization of x"-JI over 22, and after gettingf 22(x) and 922(x), we can

continue this step to getfiafx) and g2a(x), (2 • a •5 cc)

Software

The following are some screenshots, which can demonstrate our programs:

Figure 3. Main Menu

Figure 4 is the screenshot when p =2, n =7, r = 8; p should be a prime number, n should be a prime

number which has the form 8m-1, r could be any integer larger than zero. We can find that it has the same

result as in A.R.Calderbank's paper.

14

Figure 4. Output When p 2, n = 7, r = 8

Figure 5 is the screenshot when p = 3, n = 11, r = 8:

15

Figure 5. Output When p = 3, n = IH, r = 8

Figure 6 is the screenshot when p = 2, n = 23, r = 8:

16

Figure 6. Output When p =2, n =23, r 8

17

The main function of our software is the factorization of polynomial of X"-l. From the coding theory, we

know that cyclic codes have many good characteristics for error-correction and cryptography. It may have

some merit to investigate the p-adic cyclic codes. In this study, by setting up a one-to-one correspondence

between cyclic codes and ideals of a polynomials ring, we can use algebraic methods to explore the

features of p-adic cyclic codes.

In the future, we may use this software as a tool to study the features ofp-adic cyclic codes, and/or use the

software to auto-generate cyclic codes in any application.

References

[1] Dixon, J. "Exact Solution of Linear Equations Using P-adic Expansions", Numerische Mathematik 40,

137-141 (1982) Springer-Verlag.

[2] A.R.Calderbank and N.J.A.Sloane, "Modular and p-adic cyclic codes", arXiv:CO/0311319vl, 18 Nov 2003.

[3] Shoup, V NTL library at: http://shoup.net/ntl/

[4] San Ling and Chaoping Xing, "Coding Theory: a first course", Cambridge University Press, 2004

[5] Kornerup, P. and Gregory, R.T. "Mapping Integers and Hensel Codes onto Farey Fractions", BIT 23 (1983),

9-20.

[6] Krishnamurthy, F. V. "Matrix Processors Using P-adic Arithmetic for Exact Linear Computations", IEEE

Transactions on Computers, vol. C-26, No. 7, July 1977.

[7] Vladimirov, V.S., Volovich, I.V. and Zelenov, E.I. P-adic Analysis and Mathematical Physics, Series on

Soviet & East European Mathematics - Vol. 1.World Scientific 1993.

[8] Lu, C. and An, M. "Final Report of Simulation of Quantum Time-Frequency Transform Algorithms",

(FA9550-04-1-0406), 2004.

[9] Lu, C. and An, M. "Final Report of A Computational Library Using P-adic Arithmetic for Exact Computation

with Rational Numbers in Quantum Computing", (FA9550-05-1-0363), 2005.

18

